Definition

probability space


a triple (Ω,,) (\Omega, \mathcal{B}, \mathbb{P}) where

A probability measure is a function :[0,1]\mathbb{P}: \mathcal{B} \to [0,1] such that

  1. (A)0\mathbb{P}(A) \geq 0 for all AA \in \mathcal{B}
  2. \mathbb{P} is σ\sigma-additive: if {An:n1}\{A_n: n \geq 1\} are events in \mathcal{B} that are disjoint then (n=1An)=Σn=1(An)\mathbb{P}\left(\cup_{n=1}^{\infty}A_n\right) = \Sigma_{n=1}^{\infty}\mathbb{P}(A_n)
  3. (Ω)=1\mathbb{P}(\Omega) = 1.