Definition

semialgebra


a class 𝒮\mathcal{S} of subsets of Ω\Omega is a semialgebra if

  1. ,Ω𝒮\emptyset, \Omega \in \mathcal{S}
  2. 𝒮\mathcal{S} is a π\pi-system
  3. if A𝒮A \in \mathcal{S} then there is a finite collection of disjoint sets C1,,Cn C_1, \dots, C_n with Ci𝒮,i=1,,nC_i \in \mathcal{S}, i = 1, \dots, n such that A=Σi=1nCiA^{\complement} = \Sigma_{i=1}^{n}C_i

mnemonic: an everything-nothing π\pi-system in which complements are finite-disjointly decomposable