Definition

measurable map


If (Ω,) (\Omega, \mathcal{B}) and (Ω,) (\Omega ', \mathcal{B} ') are two measurable spaces, then a map X:ΩΩ X: \Omega \to \Omega ' is called measurable if X1() X^{-1}(\mathcal{B} ') \subset \mathcal{B} . In this case we write X/ X \in \mathcal{B} / \mathcal{B}' or X:(Ω,)(Ω,) X: (\Omega, \mathcal{B}) \to (\Omega ', \mathcal{B} ') . If (Ω,)=(,()) (\Omega ', \mathcal{B} ') = (\mathbb{R}, \mathcal{B}(\mathbb{R})) then we call XX a random variable.