If (Ω,ℬ) (\Omega, \mathcal{B}) and (Ω′,ℬ′) (\Omega ', \mathcal{B} ') are two measurable spaces, then a map X:Ω→Ω′ X: \Omega \to \Omega ' is called measurable if X−1(ℬ′)⊂ℬ X^{-1}(\mathcal{B} ') \subset \mathcal{B} . In this case we write X∈ℬ/ℬ′ X \in \mathcal{B} / \mathcal{B}' or X:(Ω,ℬ)→(Ω′,ℬ′) X: (\Omega, \mathcal{B}) \to (\Omega ', \mathcal{B} ') . If (Ω′,ℬ′)=(ℝ,ℬ(ℝ)) (\Omega ', \mathcal{B} ') = (\mathbb{R}, \mathcal{B}(\mathbb{R})) then we call XX a random variable.