Theorem
minimal postulates for a field
𝒜
\mathcal{A}
Ω
∈
𝒜
\Omega \in \mathcal{A}
A
∈
𝒜
⟹
A
∁
∈
𝒜
A \in \mathcal{A} \implies A^{\complement} \in \mathcal{A}
A
,
B
∈
𝒜
⟹
A
∪
B
∈
𝒜
A, B \in \mathcal{A} \implies A \cup B \in \mathcal{A}