Theorem
minimal postulates for a
σ
\sigma
-field
𝒜
\mathcal{A}
Ω
∈
𝒜
\Omega \in \mathcal{A}
A
∈
𝒜
⟹
A
∁
∈
𝒜
A \in \mathcal{A} \implies A^{\complement} \in \mathcal{A}
A
i
∈
𝒜
,
i
=
1
,
2
,
⋯
⟹
∪
A
i
∈
𝒜
A_i \in \mathcal{A}, i = 1, 2, \dots \implies \cup A_i \in \mathcal{A}