Theorem

the eight properties of probability measures


  1. complements: (A)=1(A) \mathbb{P}(A^{\complement}) = 1 - \mathbb{P}(A)
  2. empty: ()=0\mathbb{P}(\emptyset) = 0
  3. inclusion-exclusion: (AB)=(A)+(B)(AB)\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)
  4. monotonicity: AB(A)(B) A \subset B \implies \mathbb{P}(A) \leq \mathbb{P}(B)
  5. subadditivity: (n=1An)Σn=1(An) \mathbb{P}(\cup_{n=1}^{\infty}A_n) \leq \Sigma_{n=1}^{\infty}\mathbb{P}(A_n)
  6. continuity: if AnA,AnA_n \uparrow A, A_n \in \mathcal{B} then (An)(A) \mathbb{P}(A_n) \uparrow \mathbb{P}(A) ; if AnA,AnA_n \downarrow A, A_n \in \mathcal{B} then (An)(A) \mathbb{P}(A_n) \downarrow \mathbb{P}(A)
  7. Fatou: if An A_n \in \mathcal{B} for n1n \geq 1 then (lim infAn)lim inf(An)lim sup(An)(lim supAn) \mathbb{P}(\liminf A_n) \leq \liminf \mathbb{P}(A_n) \leq \limsup \mathbb{P}(A_n) \leq \mathbb{P}(\limsup A_n)
  8. more continuity: if limAn=A \lim A_n = A then lim(An)=(A) \lim \mathbb{P}(A_n) = \mathbb{P}(A)