Theorem

necessary sufficient conditions for measurability


Let , \mathcal{B}, \mathcal{B}' be σ\sigma-algebras on Ω,Ω \Omega, \Omega ' respectively and let X:ΩΩ X: \Omega \to \Omega ' . If =σ(𝒞) \mathcal{B} ' = \sigma(\mathcal{C} ') then XX is measurable if and only if X1(𝒞)X^{-1}(\mathcal{C} ') \sub \mathcal{B}.