Let ℬ,ℬ′ \mathcal{B}, \mathcal{B}' be σ\sigma-algebras on Ω,Ω′ \Omega, \Omega ' respectively and let X:Ω→Ω′ X: \Omega \to \Omega ' . If ℬ′=σ(𝒞′) \mathcal{B} ' = \sigma(\mathcal{C} ') then XX is measurable if and only if X−1(𝒞′)⊂ℬX^{-1}(\mathcal{C} ') \sub \mathcal{B}.