Theorem

properties of preimages


Let X:ΩΩX: \Omega \to \Omega '. Then the function X1:𝒫(Ω)𝒫(Ω)X^{-1}: \mathcal{P}(\Omega ') \to \mathcal{P}(\Omega) satisfies the following properties:

  1. X1()=X^{-1}(\emptyset) = \emptyset, X1(Ω)=ΩX^{-1}(\Omega ') = \Omega
  2. complements: X1(A)=(X1(A))X^{-1}(A'^{\complement}) = (X^{-1}(A'))^{\complement}
  3. unions: X1(At)=X1(At)X^{-1}(\cup A_{t}') = \cup X^{-1}(A_{t}')
  4. intersections: X1(At)=X1(At)X^{-1}(\cap A_{t}') = \cap X^{-1}(A_{t}')